Как работает мышечная память

Мышечная память – словосочетание, вокруг которого всегда происходят споры, и складывается множество противоречий. Одни атлеты уверены, что стоит только раз достичь определенного результата и нужной физической формы, и потом можно будет вернуться к прежним «наработкам» за короткие сроки после долгого перерыва. Другие спортсмены высказывают мнение, что все показатели, достигнутые за годы тренировок, быстро пойдут на убыль, стоит только на некоторое время прервать занятия.

В данном материале попробуем разобраться, существует или нет мышечная память, как она работает в пауэрлифтинге или в бодибилдинге и можно ли ее развивать.

Понятие мышечной памяти и как она работает

Определение вышеуказанного термина гласит так: «Это способность организма и тела человека запоминать уровень тонуса мускул, наработанного при физических нагрузках, а так же восстанавливать его в кротчайшие сроки после продолжительного перерыва».

Наглядно данное понятие можно пояснить на следующем примере. Вы долго тренировались, приобретали спортивную форму. Но вдруг по какой-то причине вам пришлось прекратить программу, например, из-за болезни, переезда, ухода в декрет. Через некоторое время вы решаете вернуться в зал. При этом вы добьетесь нужных показателей быстрее, чем начинающий спортсмен. Это связано с тем, что мышцы приобретают свое былое состояние благодаря оставшейся информации, которая в них хранится.

Механизм функционирования

При нагрузке на мускулы во время любой деятельности (будь то силовые упражнения или игра на музыкальном инструменте) мотонейроны, расположенные в правом полушарии головного мозга отправляют сигналы мышечным волокнам. Затем происходит обратная ситуация – мускулатура так же шлет в мозг свои сигналы.

Таким образом, создается своеобразная связь, и чем больше мы совершенствуемся в выбранной сфере, тем крепче она становится. Поэтому, научившись чему-то один раз (например, езде на велосипеде или плаванию), воспроизвести данный навык будет очень просто даже после долгого перерыва. Именно так и происходит развитие мышечной памяти.

Так же клетки волокон мускулатуры содержат большое количество ядер. В процессе активных нагрузок их число возрастает, а с ними растет и количество миозина и актина – частей ДНК, отвечающих за синтез сократительных белков. Объем мышечной массы при этом тоже увеличивается. Когда происходит прекращение тренировок, организм тратит меньше ресурсов, происходит замедление синтеза, и мускулатура теряет форму.

Но новые ядра, образовавшиеся в результате физической активности, никуда не деваются. При возобновлении нагрузок они смогут вернуть мускулам первоначальный объем и силу.

Как развивать и использовать память мышц

Тренировка мышечной памяти открывает горизонты для занятий любым видом деятельности. Самое главное – результаты, которых вы добились, останутся навсегда. Чтобы достичь успеха в определенном виде спорта, лучше начать заниматься им смолоду.

Улучшить мышечную память помогут длительные правильные тренировки и их тщательный анализ. Для этого лучше использовать индивидуально разработанные программы.

В силовых спортивных направлениях не помешает помощь инструктора или опытного товарища-наставника. К этому стоит подойти с особой серьезностью. Ведь если долгое время делать определенные упражнения неправильно, это не только навредит организму, но и «отпечатается» в информации, которую мускулатура будет использовать в дальнейшем.

Развитие памяти мышц можно производить и на психологическом уровне. Такие варианты являются второстепенными и построены на самовнушении, но они помогают быстрее достичь результатов в совокупности с физическими нагрузками. Поначалу данные методы кажутся бессмысленными, но при интенсивных занятиях являются очень полезными.

Существует два способа:

  • Во время отхода ко сну нужно закрыть глаза и представить, каким совершенным вы бы хотели видеть свое тело. При этом за ночь нужно просыпаться 2-3 раза и при погружении в сон снова повторять эти же манипуляции;
  • Вообразите в руках раскаленный шар, полностью ощутите его и начните перекатывать по всем частям тела. Затем представьте, что такой шар продвигается к горлу. Его нужно перенаправить к солнечному сплетению, потом в тазобедренную область и в конце – по ногам. Такое психологическое упражнение лучше проводить перед сном и повторять 5 раз. Оно как бы помогает пробить новые дороги к нервным окончаниям.

Для любых ли тренировок работает память мышц? Ответ однозначный – да. Мускулатура фиксирует технику исполнения разнообразных упражнений, будь то жим штанги или плавание кролем. Даже после долгосрочного перерыва вы сможете вспомнить, как правильно это делается, и вернуться в выбранную сферу деятельности.

Так же при возобновлении тренировочного курса суставы и мышцы станут меньше болеть, и будут помнить, как быстро восстановиться. Начинающим атлетам в этом плане намного труднее.

Теперь вы знаете, как развить мышечную память, поэтому временное прекращение занятий и потеря наработанных результатов не должны вас пугать. Прежние показатели можно будет восстановить в достаточно короткие сроки. Но для этого необходимо регулярно и правильно заниматься спортом и развивать мускулатуру.

Видео: Что такое мышечная память

Классический пример данного явления – езда на велосипеде. Каждая из нас довольно быстро вспомнит этот навык, даже если в последний раз каталась в 12 лет в деревне у бабушки. Выполняя упражнения, ты как бы создаешь «мостики» между нервами и мускулами, и при необходимости организм их задействует.

Читайте также  Замена подшипников генератора логан

Читайте также:  Как узнать размер подшипника по маркировке

Посмотри на пианистов, которые помнят заученные однажды произведения спустя многие годы, или профессиональных спорт­сменов: даже уйдя «в отставку», они дают фору любому неофиту. Простые смертные без диплома консерватории или олимпийской медали ничем не хуже. Например, регулярно занимаясь фитнесом, ты можешь развить мышечную память чуть ли не на всю жизнь – это будет задел на будущее, который позволит не только легче возвращаться к тренировкам после долгих перерывов (на беременность и роды например), но и проводить их эффективнее.

Сила мозга для роста мышц

Мышечная память – ключ к «закону велосипеда» – формируется за счет двустороннего обмена данными между мускулами и мозгом. Когда ты осваиваешь новый вид активности (выпады со штангой или водные лыжи например), мотонейроны правого полушария посылают мышечным волокнам сигналы, которые помогают тебе делать упражнения. Однажды получив такую информацию от мозга, мускулы начинают посылать ответные сообщения. Когда ты двигаешься, активизируются проприоцептивные нерв­ные окончания в волокнах, сухожилиях и суставах, которые постоянно отчитываются перед центральной нервной системой о положении тела в пространстве. Эти связи и формируют мышечную память. И чем регулярнее ты выполняешь определенные упражнения, тем лучше и крепче она становится.

До недавнего времени считалось, что именно связи между мозгом и мышцами помогают быстрее вернуться к тренировкам после перерыва. Но норвежские ученые обнаружили другой, клеточный, пласт. По их предположениям, упражнения также вызывают долгосрочные, а возможно, и перманент­ные изменения в кле­тках. Все, как обычно, началось с мышей. Шесть дней грызуны занимались чем-то похожим на силовые тренировки (чем именно? Сами не представляем!).

За это короткое время в клетках их мускулов появились новые ядра. Причем такие, в которых содержатся части ДНК, ответственные за формирование новых мышц. Спустя месяц после прекращения занятий мускулы мышек «сдулись», но новые ядра никуда не делись и продолжали ждать своего часа – нагрузки. Норвежцы предполагают, что эти изменения внутри клеток могут происходить и в теле человека, и не исключают, что сохраняться они могут в течение всей жизни.

Развивай мышечную память!

Польза регулярных нагрузок

Американские исследователи собрали группу женщин, которые два раза в неделю в течение 140 дней получали силовые нагрузки. После этого дам отправили отдыхать на целых восемь месяцев. Вернувшись в фит­нес, они гораздо быстрее и проще наращивали мышечную массу и достигали результатов, чем только что подключившиеся участницы эксперимента. «Новичок «сырой», ему нужно пройти период обу­чения.

А те, у кого уже есть навык определенных действий (то есть как раз мышечная память), не тратят на это время, им нужно только восстановиться, – объяс­няет наш фитнес-эксперт, многократная чемпионка России и двукратная чемпионка Европы по фитнесу Лидия Ершова. – Конечно, спустя восемь месяцев «прогулов» ты не сможешь сразу вернуться к тем же нагрузкам, на которых остановилась, но все равно результаты не заставят себя ждать». Руководитель групповых программ сети клубов «Планета Фитнес» Виталий Вознюк отмечает, что мышечная память работает для всех видов тренировок, однако обрести ее проще при силовых нагрузках: аэроб­ные зачастую более высоко координированы, на их запоминание организму требуется значительно больше времени.

Занимаясь регулярно, ты как бы создаешь банковский вклад – НЗ на черный день фитнес-безденежья. Причем он не только позволит вернуться к тренировкам даже после длительного бездействия. Вариантов «обналичивания» масса. Даже после прекращения целенаправленных занятий ты все равно выносливее, стрессоустойчивее и менее чувствительна к боли, чем те, кто редко поднимает что-то тяжелее бокала с вином.

Зрелый возраст — свои плюсы в спорте

Оставляй мышцам хорошие воспоминания

Если ты уже подумываешь взять бессрочный академ от спортзала, притормози. Бросив все, скажем, через три месяца после начала занятий, ты положишь на свой «мышечный» счет те же три копейки. Ведь получится, что тренировки оборвались еще на том самом этапе обучения.

Кроме того, вынуждены напомнить, что с возвращением к сидячему образу жизни физическая форма неизбежно будет ухудшаться. Вес пойдет вверх, а мышцы, наоборот, начнут терять в объеме. А зачем, спрашивается, хранить красоту в пассиве без всяких уважительных причин, грея себя мыслью, что тело хранит о ней приятные воспоминания? Лучше заключи трудовое соглашение из трех пунктов с мышечной памятью.

  1. Не забывай, что с возрастом способность развивать новые мускулы снижается. Поэтому чем раньше ринешься в бой, тем больше в течение жизни запомнит тело.
  2. Не заводи порочных связей. Между мозгом и мышцами, конечно, а ты о чем подумала? «У когда-то занимавшихся выше уровень подготовки, даже если перерыв был длительным. Но главное здесь, чтобы ранее упражнения выполнялись правильно, потому что переучивать гораздо сложнее, чем учить заново», – говорит Виталий Вознюк. «Тренеру действительно тяжелее скорректировать технику, – соглашается Лидия Ершова. – Поэтому нельзя отпускать новичка в свободное плавание, иначе у него сформируется не тот навык. Да и сами мышцы будут расти не так, как он рассчитывает. Например, клиенты часто жалуются, что, работая над ягодицами, накачивают переднюю поверх­ность бедра. А дело в том, что все зависит от техники: заучишь упражнение неправильно – будешь получать не тот результат». Прости, но учиться нужно всему – даже бегу. Найди для этих целей хотя бы тренера с легкоатлетическим прошлым. Лидия поясняет, что от техники зависит то, насколько энергоемко и безопасно организм выполняет движения. Представь себе троих, выплывающих из прохудившейся лодки: профессионального пловца, человека, у которого за плечами хоть какой-то опыт тренировок, и того самого не обученного фитнесу, не поднимающего ничего, кроме бокала вина. В какой очередности они достигнут берега – вопрос риторический. Но равняться нужно на пловца: он будет первым, в том числе, за счет отточенной техники движений – организму понадобится меньше сил для преодоления расстояния.
  3. Направляй мышечную память в нужное русло. То есть повышай свои навыки в условиях, максимально приближенных к тем, в которых ты можешь или хочешь оказаться. Например, любишь горы – адаптируй часть тренировок под прогулки по склонам. Тот факт, что ты классно танцуешь или быстро бегаешь, конечно, влияет на выносливость, но, увы, не гарантирует тебе покорение любой вершины. Ну и, прежде чем рассчитывать на мышечную память за пределами спортзала, вспомни, делала ли ты что-то подобное раньше?
Читайте также  Какой металл в катализаторе

Читайте также:  Можно ли застраховать машину

Автор – Наталья Резник.

Память — это процесс кодирования, хранения и использования информации. Согласно современным представлениям, у позвоночных все эти процессы происходят в мозге. Но скелетные мышцы, оказывается, тоже обладают памятью. Они способны быстро восстанавливать утраченные силу и массу; необходимые для этого упражнения даются бывшим атлетам легче и восстановление происходит быстрее, чем у нетренированных людей, даже после многолетнего перерыва.

Обновлено 26.06.2019 19:06

Не надо путать этот феномен с автоматическими движениями тела, которые также называют иногда мышечной памятью. Еще Рене Декарт (1596—1650) отмечал, что пальцы игроков на лютне как бы сами помнят пассажи. Однако автоматизм музыкантов — результат моторного обучения центральной нервной системы, и оно не объясняет различий в скорости роста мышц у тренированных и нетренированных людей. По мнению профессора университета Осло Кристиана Гундерсена (Kristian Gundersen), много лет посвятившего исследованию этой проблемы, в данном случае своеобразной памятью обладают сами клетки скелетной мускулатуры [1].

Рост и атрофия мышц. Общепринятая модель

Строго говоря, скелетные мышцы состоят не из клеток, а из мышечных волокон, каждое из которых представляет собой синцитий, то есть результат слияния нескольких клеток. Слившиеся клетки объединили цитоплазму, но не ядра, поэтому мышечное волокно содержит несколько ядер (миоядер, как их иногда называют), равномерно распределенных по его длине, и каждое ядро окружено рибосомами, в которых происходит синтез белка. Многоядерность мышечному волокну необходима. Дело в том, что оно гораздо крупнее других клеток, его длина обычно равна длине скелетной мышцы и у взрослого человека может достигать 20 см при толщине до 100 мкм. Рост мышцы происходит за счет синтеза белка. Чем активнее она растет, тем больше белка требует, причем нужны ей не только актин с миозином. Значительная часть синтетической активности уходит на образование рибосом, для чего необходимо несколько сотен разных белков. Любые заминки с белковым синтезом затормозят гипертрофию мышцы. Очевидно, одно ядро просто не в состоянии обеспечить большое мышечное волокно достаточным количеством РНК, а если бы и смогло, белки потом пришлось бы перемещать из одного центра на огромные по клеточным меркам расстояния, для чего нужна развитая транспортная система. В такой ситуации рациональнее иметь несколько ядер и центров белкового синтеза.

В мышечном волокне происходит не только синтез белка, но и его распад (протеолиз). От соотношения этих процессов зависит, растет мышца или атрофируется. Чем активнее растет мышца, тем больше ядер должно содержать одно волокно (рис. 1). Необходимое количество ядер мышечное волокно добирает, присоединяя сателлитные клетки. Эти недифференцированные клетки лежат прямо на мышечном волокне. В случае необходимости они дифференцируются, давая начало новым мышечным волокнам, или сливаются с уже существующими, увеличивая количество ядер в нем.

Рисунок 1. Синтез белка зависит от количества миоядер и их активности. Баланс между синтезом и деградацией белка определяют размер мышечного волокна.

Согласно традиционным представлениям, при мышечной атрофии белковый синтез ослабевает, протеолиз набирает силу, и мышечные волокна уменьшаются в размерах, при этом происходит избирательный апоптоз лишних миоядер внутри живого волокна. Их количество регулируется таким образом, чтобы объем цитоплазмы, приходящейся на одно ядро, был всегда постоянным (рис. 2). Согласно этой модели, выросшее, а потом атрофировавшееся мышечное волокно неотличимо от волокна, которое никогда не тренировали. Такая модель не предполагает наличия мышечной памяти.

Рисунок 2. Растущее мышечное волокно получает дополнительные миоядра из сателлитных клеток, при атрофии оно теряет ядра в результате избирательного апоптоза. Модель не предполагает наличия мышечной памяти.

Модель мышечной памяти

Последние данные показывают, что рост происходит не совсем так, как предполагает традиционная модель, в частности, дополнительные ядра включаются в волокно до того, как оно начинает расти, а не после. Однако основное расхождение модели с реальностью обнаружилось, когда Кристиан Гундерсен и его коллеги подсчитали миоядра в атрофирующейся мышце. Для этого они использовали специальную технику, позволяющую день за днем получать изображения одного и того же фрагмента мышечного волокна in vivo. Ученые подтвердили, что при гипертрофии количество миоядер должно увеличиваться, иначе растущее мышечное волокно не обретет должной силы. А затем они выяснили, что при мышечной атрофии миоядра никуда не исчезают. Их число остается прежним, хотя объем волокна уменьшился и синтез белка в нем ослаб. Исследователи экспериментировали с крысами, вызывая у них атрофию и быстрых, и медленных волокон. Методы для этого использовали разные: перерезали идущий к мышце нерв, блокировали нервный импульс тетродотоксином, подвешивали животных за хвост, так что нагрузка на задние лапы ослабевала. Количество миоядер в атрофирующейся мышце не уменьшалось независимо от типа волокна и модели атрофии.

Читайте также  Выезд со второстепенной дороги на главную

Читайте также:  Kia проверка по vin

Исследователи полагают, что другие методы исследования, на основании которых сделан вывод об апоптозе миоядер, не позволяют достоверно различать миоядра и ядра других клеток мышечной ткани, а таких примерно половина. Возможно, при атрофии какие-то клетки разрушаются, в том числе мышечные волокна, и находящиеся в них ядра погибают, но этот процесс не имеет отношения к избирательному апоптозу миоядер в живых мышечных волокнах.

Но если миоядра, попав в мышечное волокно, так там и остаются, будет ли повторно растущее волокно снова их рекрутировать? Кристиан Гундерсен убедился, что нет. Рост атрофированных крысиных мышц не сопровождался увеличением числа миоядер, хотя волокна после тренировки стали толще на 60%.

Специалисты из Швеции, Франции и Дании провели исследования на человеке [2] и доказали, что пока гипертрофия не достигает определенного предела (17-36%), рост мышечного волокна происходит без рекрутирования новых миоядер. По-видимому, этот предел зависит от объема цитоплазмы, приходящегося на одно ядро.

Количество миоядер в мышечном волокне — это и есть, по мнению исследователей, мышечная память (рис. 3). Нетренированные волокна маленькие, и ядер в них мало. Для роста им нужно рекрутировать ядра из сателлитных клеток, а для этого требуются энергия и время. Если затем мышца атрофируется, миоядра в ней сохраняются, они защищены от апоптозной активности. Мышечное волокно атрофированной мышцы тоже маленькое, однако ядер в нем много. Они малоактивны и не синтезируют белки, однако при возобновлении тренировок активизируются, и волокна быстро возвращаются к прежним размерам. Новые ядра рекрутируются лишь в том случае, когда волокно этот размер перерастает.

Рисунок 3.Модель мышечной памяти. При атрофии мышечное волокно не теряет ядра, а скорость его роста зависит от того, сколько миоядер в нем содержится.

Мышечная память могла возникнуть в ходе эволюции из экономических соображений. Регулярно синтезировать и рекрутировать новые миоядра дорого, куда экономнее их сохранять. Исследователи не делали расчетов, но полагают, что содержание большого количества миоядер в маленьком волокне, и так набитом сократительными белками, обойдется все-таки дешевле, чем энергетические затраты на их апоптоз и синтез.

Мышечная память, здоровье и допинг

Мышцы, как известно, растут не только в результате силовых тренировок. Авторы гипотезы в течение двух недель давали самкам мышей тестостерон. У животных увеличились размер мышц и количество миоядер. Спустя три недели после отмены препарата объем волокон вернулся к первоначальному значению, такому же, как у контрольной группы, а миоядра сохранились. Спустя три месяца мышам обеих групп сделали небольшую операцию, в результате которой возросла нагрузка на некоторые мышцы. В экспериментальной группе масса мышц выросла за шесть дней на 36%, а в контрольной — только на 6%. Три месяца составляют примерно десятую часть мышиной жизни. Все это время мышечные волокна хранили память о кратковременном воздействии тестостерона. Мышечные волокна человека живут около 15 лет, столько же сохраняется их ядра и, следовательно, память. Если даже краткий курс гормональной терапии имеет такие длительные последствия, придется, очевидно, менять правила допинг-контроля. Авторы гипотезы даже засомневались в возможности существования бездопингового спорта. Всемирное антидопинговое агентство никаких мер принимать не собирается, пока наличие мышечной памяти у людей не будет должным образом подтверждено.

Теория мышечной памяти найдет применение и в здравоохранении. В старости у людей мышцы атрофируются и очень плохо восстанавливаются после повреждения, поскольку в этом возрасте пул сателлитных клеток истощен и новые ядра в мышечные волокна почти не поступают. Чтобы избежать этих проблем, надо в молодости заниматься силовыми упражнениями, чтобы накопить запас миоядер, достаточный для поддержания мышечной массы в старости.

1. Gundersen K., «Muscle memory and a new cellular model for muscle atrophy and Hypertrophy», Journal of Experimental Biology (2016) 219, 235-242, doi:10.1242/jeb.124495

2. Kadi, F., Charifi, N., Denis, C., Lexell, J., Andersen, J. L., Schjerling, P., Olsen, S. and Kjaer, M… The behaviour of satellite cells in response to exercise: what have we learned from human studies? Pflugers Arch. (2005) 451, 319-327.

Источник: autobryansk.info

СТО Тех-ервис